The return-maximizing blend of reusable items/services with stochastic demand and providers with price differentials

Saga to "Optimizing delivery costs by establishing a new fleet size under stochastic demand" and "Minimizing cost of calls to wireless phones under Calling Party Pays"

E. González L. Epstein M. Herrera

${ }^{1}$ Facultad de Ingeniería y Ciencias
Universidad Adolfo Ibáñez
Santiago de Chile

SAT-6, 2012

Context
 Regulatory framework

- Legally binding: form Receiving Calling Party Pays to Calling Party Pays
- Differential of prices: High fixed cost \& Low Op. Cost vs. Low fixed cost \& igh Op. Cost
- Civil suits due to bypassing

Bypass Tech

Goal
Closing on Optimization
Process of Optimization

Available bypass technology

Main Goal

- Reduce costs without loosing outbound calls.
- Include transient effects.

Method of solution

Already done

- Infinite population and stationary.
- Finite population and stationary.

Finite population and Transient

Analogies and assumptions

- Already existing (old trucks) with high operation costs. (Fixed to mobile costs)
- New fleet of trucks to buy: low operation costs, but non negligible purchase cost. (Mobile to Mobile costs)
- Both operationally equivalent trucks (new and old). (Same QoS as in Mobile traffic)
- Finite number of drivers follow an availability hourly-profile. (Like calling agents from a finite population)

The Model
Mathematical Model
Example
Results

Modelling calls to mobile

Only to-mobile-calls and finite number of ca

Full states transition diagram for 9 bypasses, 5 overflow channels, 50 calling agents and negligible traffic to fixed phones.

wnumpan ifiges

Non stationary case

In general, from the transition diagram:

$$
\begin{aligned}
p_{i, j}(t+\Delta t)-p_{i, j}(t)= & \left((i+1) \cdot \mu \cdot p_{i+1, j}+(j+1) \cdot \mu \cdot p_{i, j+1}+A_{i, j} \cdot p_{i-1, j}\right. \\
& \left.-p_{i, j} \cdot\left(j \cdot \mu+B_{i, j}+i \cdot \mu\right)\right) \Delta t
\end{aligned}
$$

where

$$
\begin{gathered}
A_{i, j}=\{K-(i+j-1)\} \cdot \alpha \\
B_{i, j}=\{K-(i+j)\} \cdot \alpha
\end{gathered}
$$

(and $K=50$).

Non stationary case

And the matrix equation resulting from all the possible states is:

$$
\frac{d p}{d t}=Q p
$$

where p stores all the transient states probabilities, and Q is a matrix that holds the coefficients of the linear equations already shown. Q can be any time function in which case the analytic solution is:

$$
p(t)=e^{\int_{0}^{t} Q(\tau) d \tau} p(0)
$$

And if time is discretized $Q(t)$ can be assumed as constant values changing at each time-step.

Mathematical Modelling

With m overflow channels, n bypass channels, K_{h} calling agents just to-mobile calls, the expected cost is:

$$
\begin{aligned}
C(n, m)= & D \cdot L \cdot\left\{\sum_{h=1}^{h=1440} \sum_{i=0}^{i=n} \sum_{j=0}^{j=m}\left(i \cdot V_{1 h}+j \cdot V_{2 h}\right) \cdot p\left(i, j, E_{h}, n, m, k_{h}\right)\right\} \\
& +n \cdot C_{n}+m \cdot C_{m}+C I
\end{aligned}
$$

where

$$
L=\sum_{l=1}^{I=T}\left(\frac{1-b}{1+r}\right)^{I-1}
$$

The expected traffic for one day of operation is,

$$
T(n, m)=\frac{1}{60} \sum_{h=1}^{h=1440} \sum_{i=0}^{i=n} \sum_{j=0}^{j=m}(i+j) \cdot p_{m}\left(i, j, E_{h}, n, m, k_{h}\right) .
$$

Input parameters (1)

With constant service rate and constant arrival call rate, but varying size of the population for one day, the expected demanded traffic assuming stationary probabilities is :

Expected traffic demand

Input parameters (3)

Main components

- Horizon (T): 24 months,
- Working Days per month (D): 22 (Adjust)
- Actualization rate (r): 0.4% per month (Adjust)
- Tariff Reduction rate (b): 0.3% per month (Adjust)
- Finite and hourly-dependent number of calling agents (Adjust)
- Rates: (Adjust)
- Day, land to mobile: 153.0 CLP/min
- Night, land to mobile: 92.5 CLP/min
- All day, mobile to mobile: 47.2 CLP/min
- $C_{M F B}: 240 \cdot 10^{3} \mathrm{CLP}$ (Adjust)

The Model
Mathematical Model Example Results

Optimization Example

Simplified model: Poisson in-frame homogeneous

The Model
Mathematical Model Example
Results

Optimization Example

Simplified model: Poisson in-frame homogeneou

Traffic to wireless devices

The Model
Mathematical Model Example
Results

Probabilites

Probabilities for the first 3 states.

Existing 14 Overflow lines

- Analytical model:
- Optimum numer of bypass: 11
- Savings: 0.12 million USD
- Optimum Cost: 0.348 million USD
- Fast ROI

Traffic Profiles

Transient analysis shows the difference (green is transient):
Expected Traffic (demanded and served)

Research follow-up

- Adjust values to other industries
- Three state variable model
- Design for Multicompany outsourcer
- Find criterion for simplifications
- Extend to other distributions of probability

