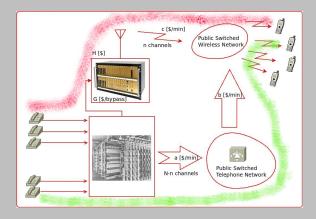
The return-maximizing blend of reusable items/services with stochastic demand and providers with price differentials Saga to "Optimizing delivery costs by establishing a new fleet size under stochastic demand" and "Minimizing cost of calls to wireless phones under Calling Party Pays"

E. González L. Epstein M. Herrera

¹Facultad de Ingeniería y Ciencias Universidad Adolfo Ibáñez Santiago de Chile

SAT-6, 2012

Bypass Tech Goal Closing on Optimization Process of Optimization


Context Regulatory framework

- Legally binding: form Receiving Calling Party Pays to Calling Party Pays
- Differential of prices: High fixed cost & Low Op. Cost vs. Low fixed cost & igh Op. Cost
- Civil suits due to bypassing

Bypass Tech Goal Closing on Optimization Process of Optimization

Available bypass technology

Bypass Tech Goal Closing on Optimization Process of Optimization

Main Goal

• Reduce costs without loosing outbound calls.

• Include transient effects.

Bypass Tech Goal Closing on Optimization Process of Optimization

Method of solution

Already done

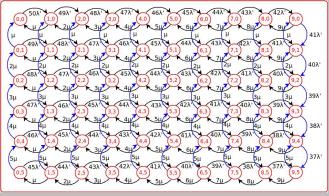
- Infinite population and stationary.
- Finite population and stationary.

Finite population and Transient

Bypass Tech Goal Closing on Optimization Process of Optimization

Analogies and assumptions

- Already existing (old trucks) with high operation costs. (Fixed to mobile costs)
- New fleet of trucks to buy: low operation costs, but non negligible purchase cost. (Mobile to Mobile costs)
- Both operationally equivalent trucks (new and old). (Same QoS as in Mobile traffic)
- Finite number of drivers follow an availability hourly-profile. (Like calling agents from a finite population)



The Model Mathematical Model Example Results

Modelling calls to mobile (1)

Only to-mobile-calls and finite number of calling agents

Full states transition diagram for 9 bypasses, 5 overflow channels, 50 calling agents and negligible traffic to fixed phones.

The Model Mathematical Model Example Results

Non stationary case

In general, from the transition diagram:

$$p_{i,j}(t + \Delta t) - p_{i,j}(t) = ((i+1) \cdot \mu \cdot p_{i+1,j} + (j+1) \cdot \mu \cdot p_{i,j+1} + A_{i,j} \cdot p_{i-1,j}) - p_{i,j} \cdot (j \cdot \mu + B_{i,j} + i \cdot \mu)) \Delta t$$

where

$$A_{i,j} = \{K - (i+j-1)\} \cdot \alpha$$

$$B_{i,j} = \{K - (i+j)\} \cdot \alpha$$

(and K = 50).

The Model Mathematical Model Example Results

Non stationary case

And the matrix equation resulting from all the possible states is:

$$\frac{dp}{dt} = Qp$$

where p stores all the transient states probabilities, and Q is a matrix that holds the coefficients of the linear equations already shown. Q can be any time function in which case the analytic solution is:

$$p(t) = e^{\int_0^t Q(\tau) d\tau} p(0)$$

And if time is discretized Q(t) can be assumed as constant values changing at each time-step.

The Model Mathematical Model Example Results

Mathematical Modelling

With *m* overflow channels, *n* by pass channels, K_h calling agents just to-mobile calls, the expected cost is:

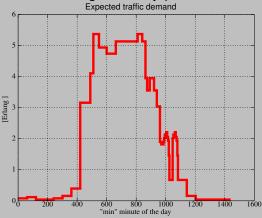
$$C(n,m) = D \cdot L \cdot \left\{ \sum_{h=1}^{h=1440} \sum_{i=0}^{i=n} \sum_{j=0}^{j=m} (i \cdot V_{1h} + j \cdot V_{2h}) \cdot p(i,j,E_h,n,m,k_h) \right\} + n \cdot C_n + m \cdot C_m + CI,$$

where

$$L = \sum_{l=1}^{l=T} \left(\frac{1-b}{1+r} \right)^{l-1}$$

The expected traffic for one day of operation is,

$$T(n,m) = \frac{1}{60} \sum_{h=1}^{h=1440} \sum_{i=0}^{i=n} \sum_{j=0}^{j=m} (i+j) \cdot p_m(i,j,E_h,n,m,k_h) \cdot$$

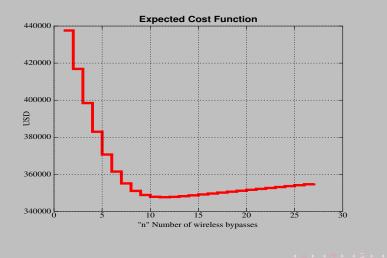


The Model Mathematical Model Example Results

Input parameters (1)

With constant service rate and constant arrival call rate, but varying size of the population for one day, the expected demanded traffic assuming stationary probabilities is :

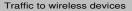
The Model Mathematical Model Example Results

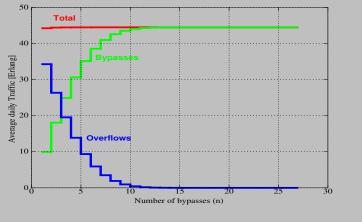

Input parameters (3) Main components

- Horizon (T): 24 months, (Extend)
- Working Days per month (D): 22 (Adjust)
- Actualization rate (r): 0.4% per month (Adjust)
- Tariff Reduction rate (b): 0.3% per month (Adjust)
- Finite and hourly-dependent number of calling agents (Adjust)
- Rates: (Adjust)
 - Day, land to mobile: 153.0 CLP/min
 - Night, land to mobile: 92.5 CLP/min
 - All day, mobile to mobile: 47.2 CLP/min
- C_{MFB} : 240 · 10³ CLP (Adjust)

The Model Mathematical Model Example Results

Optimization Example

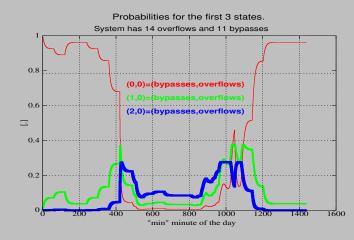

Simplified model: Poisson in-frame homogeneous



UNIVERSIDAD ADOLFO IBÁÑEZ

The Model Mathematical Model Example Results

Optimization Example Simplified model: Poisson in-frame homogeneou



UNIVERSIDAD ADOLFO IBÁÑEZ

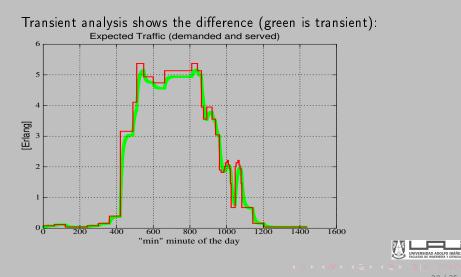
The Model Mathematical Model Example Results

Probabilites

The Model Mathematical Model Example Results

Existing 14 Overflow lines

• Analytical model:


• Optimum numer of bypass: 11

- Savings: 0.12 million USD
- Optimum Cost: 0.348 million USD
- Fast ROI

Motivation The Model Modelling Example Conclusions and Future Working Results

Traffic Profiles

Research follow-up

- Adjust values to other industries
- Three state variable model
- Design for Multicompany outsourcer
- Find criterion for simplifications
- Extend to other distributions of probability

