

Uso eficiente de la Energía en Procesos Mineros

Jorge Pontt^(1,3), Waldo Valderrama^(1,2), Manuel Olivares^(1,3), Fernando Rojas^(1,4), Hernán Robles^(1,3), Sebastian L'Huissiers^(1,3), Felipe Leiva^(1,3)

E-mail: jorge.pontt@usm.cl, Fono: +56-32-2654553

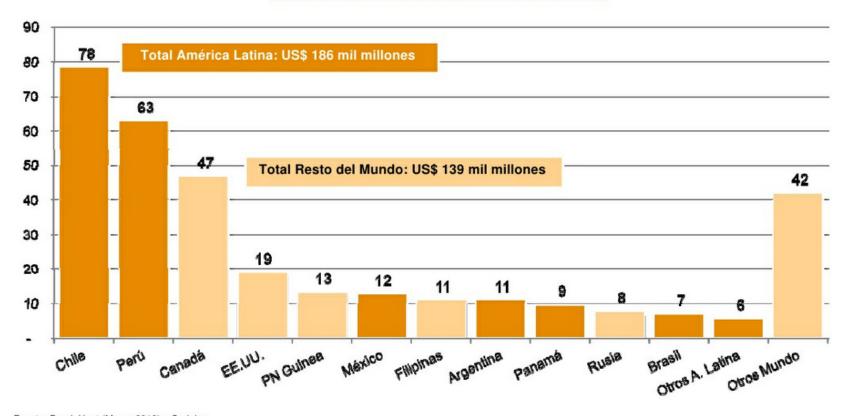
¹ Centro de Automatización y Supervision para la Industria Minera (CASIM), (2)D.Ing.Metalúrgica, (3) D.Electrónica, (4)D.Ing. Mecánica, UTFSM, Universidad Técnica Federico Santa María

Av. España 1680, Valparaiso, Chile

Calama, 5-6 de Julio, 2012

Producción de cobre proyectada

De 5,5 a 7,5 Millones tmf cobre/año



Inversión L.A.:186 Billones USD 2012-21

Inversión Mundial Estimada en Proyectos de Cobre*

Período 2012-2021, miles de millones de US\$, moneda 2012

TOTAL MUNDIAL: US\$ 325 mil millones

Fuente: Brook Hunt (Marzo 2012) y Codelco. Nota: (*): Considera el CAPEX de la cartera de proyectos en construcción, altamente probables, probables y posibles (expansión).

Referencias

- [1] Marco Orellana, Codelco Digital: Vision y Estrategia. 2009.
- [2] Editec, ELECGAS 2012
- [3] Akagi, H. (2011a), "Editorial: Special Section on Power Electronics in Sustainable Energy", IEEE Trans. On Power Electronics, 2011, pp. 3433-3434.
- [4] Blaabjerg, F.; Guerrero, J.M. (2011), "Smart grid and renewable energy systems", International Conference on Electrical machines and systems, ICEMS 2011, pp.1-10.
- [5] Energy.gov,(2012), What a smart grid means to our nation's future, http://energy.gov/oe/office-electricity-delivery-and-energy-reliability, consultado el 25.06.2012.
- [6] FundaciónChile, Fuerza Laboral en la Gran Minería Chilena, Diagnóstico y Recomendaciones, 2011-2020, Nov. 2011.
- [7] Diego Hernández, **Desafíos y oportunidades de la Minería en Améria Latina**, EXPOMIN 2012, Conferencia Inaugural, 9 de abril, 2012.
- [8]Link programa **Diploma: Nuevas Tecnologías en el Sector Minero**http://www.casim.utfsm.cl/09-eventos/20120510/diplomado NTSM/diplomado.php

Desafíos del sector minero-Factores

- HSEC
- Ambiente (Impactos, Pasivos Ambientales Mineros)
- Energía
- Agua
- Competitividad "Cluster Minero"
- Know-how, Tecnología, equipos
- Recursos Humanos

Impacto en el medio ambiente

- 1 MWh = 1000 kWh
- 1 MWh Eficiencia Energética o de ERNC ahorra

Emisiones ca. 0.5-1 Tons of CO_2 (eq)

Ejemplos: Emisiones de CO2

- Producir 1 ton de Cobre Fino
- 3...7 MWH/tmf: 1.5-7 Ton CO₂

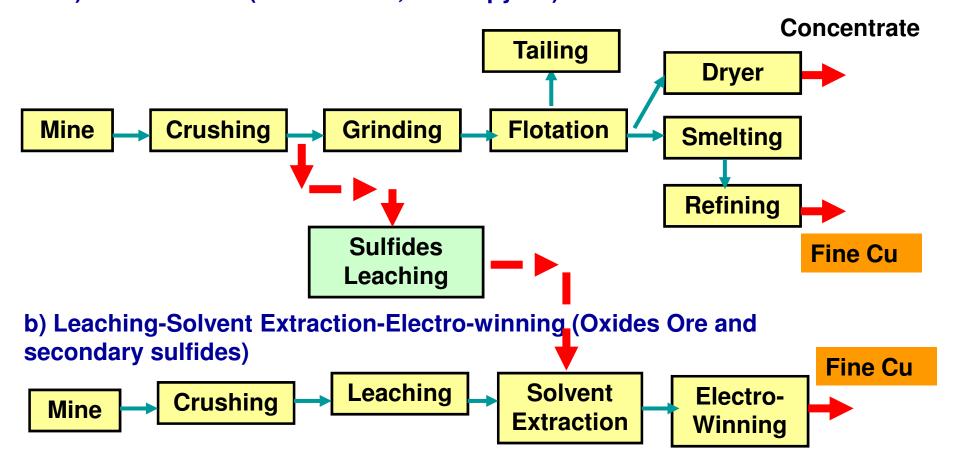
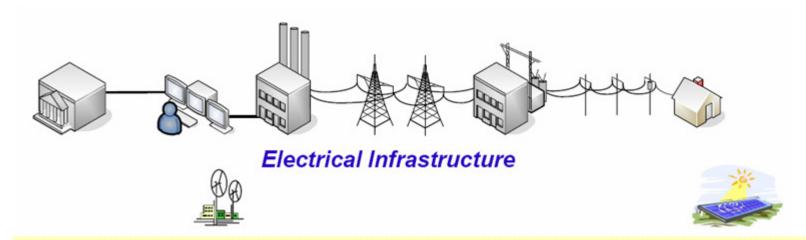
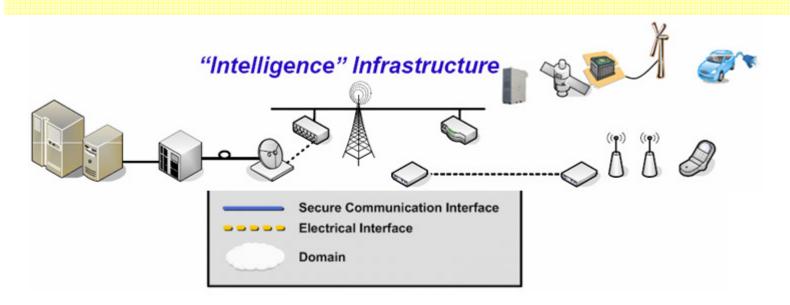

Ref. COCHILCO

Fig.1 Tecnologías de Procesos

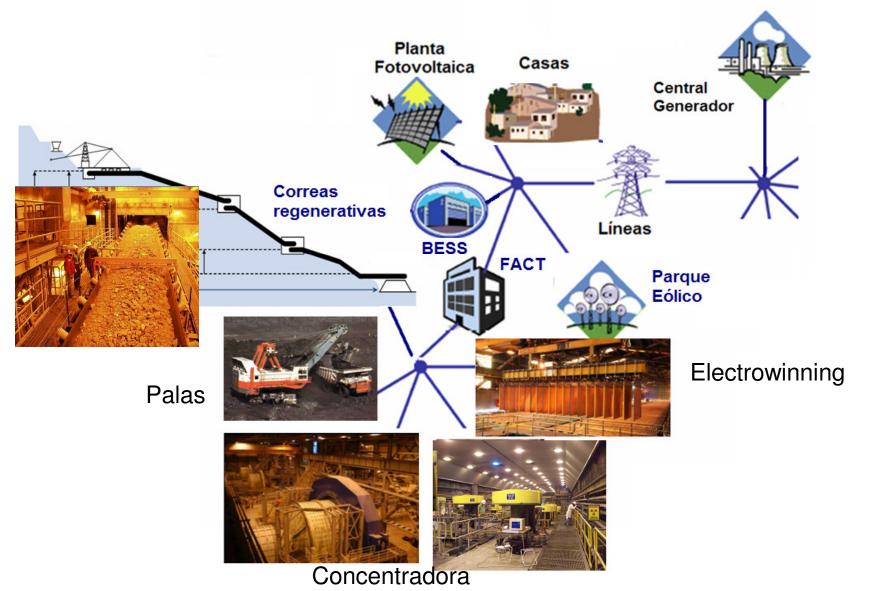


a) Conventional (Sulfides Ore, chalcopyrite)



Obs. No tailings, No Grinding, No Smelting.

Fig.2 Smart grid


Integración de ambas infraestructuras

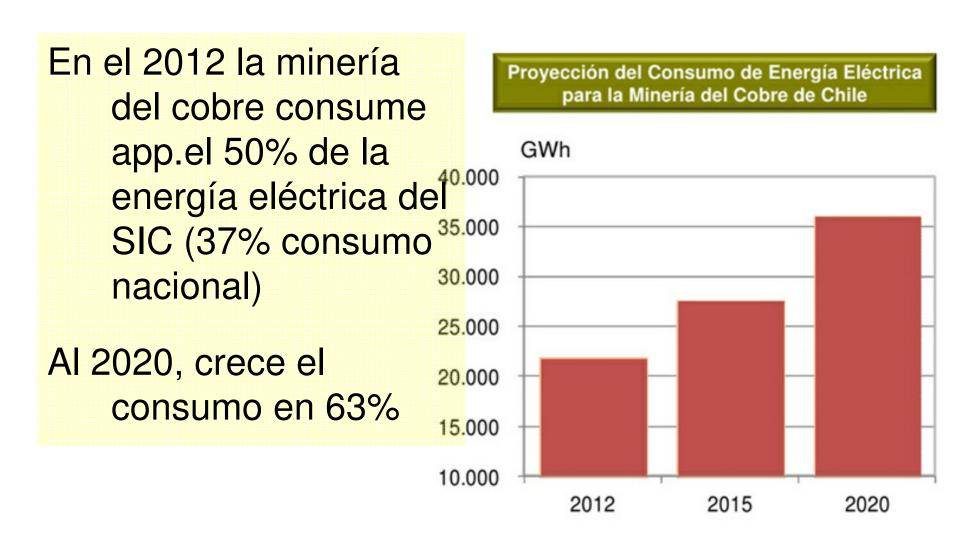
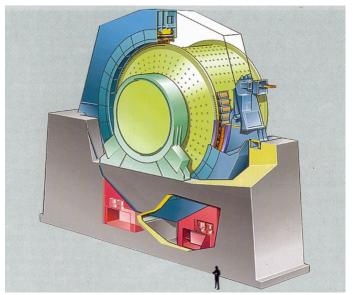
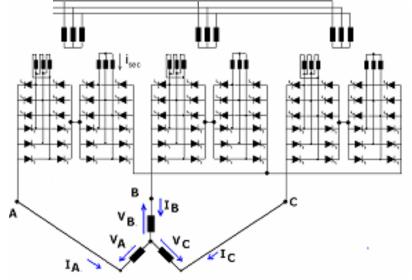


Fig.3 Smart Grid minera

Escasez y costo de la Energía Eléctrica


Fig.4 Energía usada en Molienda

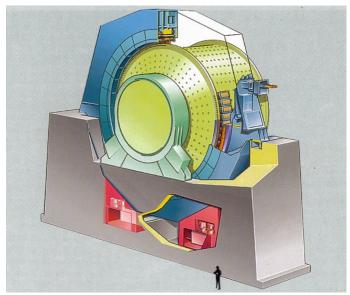

Concentradoras producen un 75% del cobre

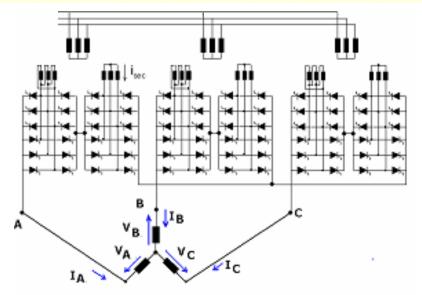
Consumen un 70% de la energía eléctrica de la faena.

Consumen un 50% del consumo de minería de cobre.

Esquema GMD alta potencia (cortesía ABB)

Esquema de cicloconversor de alta potencia


Concentradoras, Molienda


Consumen 25% de la energía eléctrica del SIC (2012)

Usan Sistemas Electrónica de Alta Potencia

Requieren ser "smart grids"

Esquema GMD alta potencia (cortesía ABB)

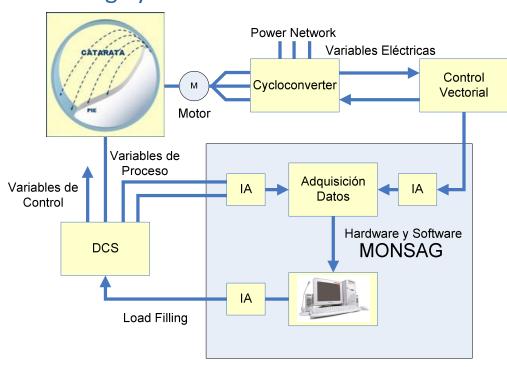
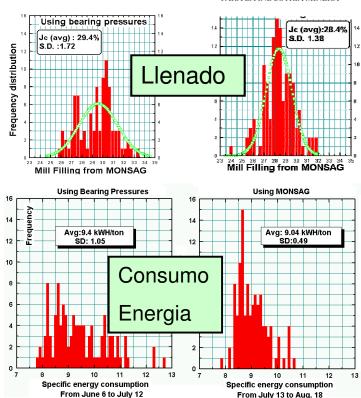

Esquema de cicloconversor de alta potencia

Fig.5 Optimización control de llenado y eficiencia Molino SAG

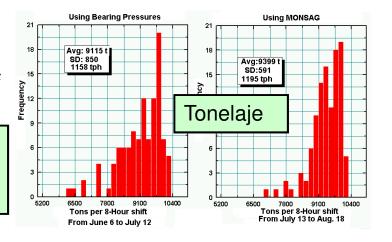
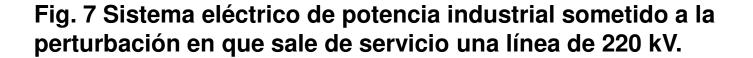
CASIM

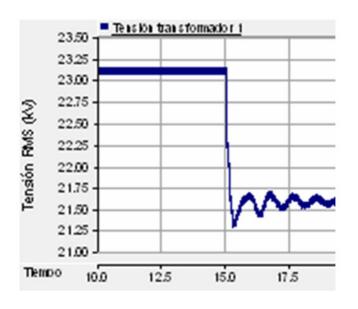

CENTRO DE AUTOMATIZACIÓN Y SUPERVISIÓN
PARA LA INDUSTRIA MINERA

Monsag System

It gives an estimation of the internal load filling of the rinding mill

Mejor producción y energía específica, ca. 3,2% y 3,8%.


Fig.6 Optimización de operación de Sistema eléctrico de potencia industrial ante perturbaciones

con sistema compensador dinámico 23.50 23.25 23.00 22.75 Sin 22.50 22.25 compensación 22.00 **Distorsiones** 21.75 21.50 armónicas 21.25 21.00 10.0 125 15.0 17.5 ■ Teasion Transformacior 1 23.50 23.25 23.00 22.75 Fensión RMS (KV) 22.50 22.25 22.00 Con 21.75 21.50 compensación 21.00 FΑ Sistema compensación STATCOM dinámica con STATCOM

- a)Sin sistema de compensación,
- b)Con sistema de compensación STATCOM

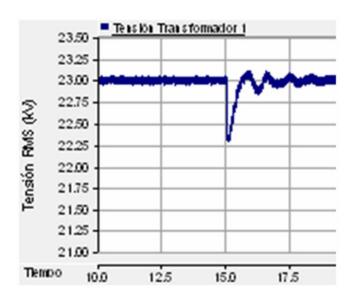
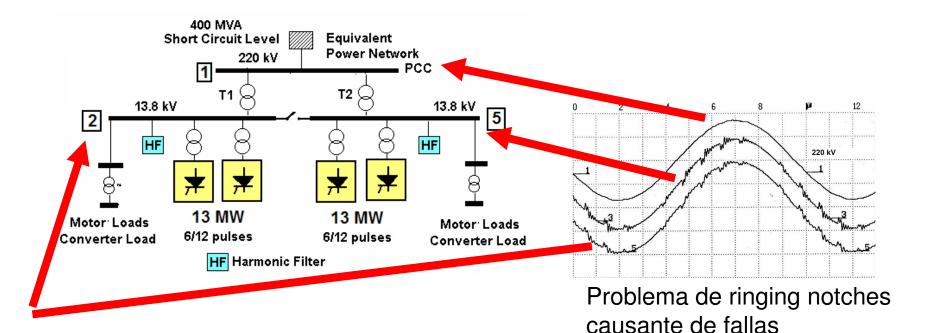



Fig.8 Rectificador para Electro-winning. Problema de ineestabilidad por armónicas de alta frecuencia.

El control en un mejor punto de operación produjo una estabilidad de operación y un ahorro de 400 kW, lo que con FU=0.95 año y un factor de 0.95 Tons CO₂/MWH equiv., representa un ahorro de 3329 MWH con una reducción de 3162 tons CO₂.

Conclusiones

- Operaciones a gran escala requieren equipamientos cada vez más grandes
- La eficiencia de los Molinos SAG depende del control del movimiento de la carga.
- La eficiencia de los rectificadores de potencia EW depende de la confguración y operación del Sistema eléctrico.
- Un mejor control de procesos logra una mejor estabilidad, con mejor desempeño productivo y eficiencia energética.
- Sistemas eléctricos son parte del Proceso.

Conclusiones

- Molino SAG con ahorro de 0,36 kWh/Ton, con 12.483.000 tons/year representa un ahorro de 4494 MWh/year, impacto 4269Tons CO₂ /year.
- Rectificador EW con ahorro de 400 kW, representa un ahorro de 3329 MWH con una reduccion de 3162 tons CO₂.
- Tendencia a "Redes Inteligentes" = → "smart grids"
- Gran capacidad del capital humano en Chile para la innovación tecnológica
- Optimización se basa en el modelado, simulación y formulación matemática de los procesos.

Escasez de Recursos Humanos

2012-2020 requiere mínimo 50.000 personas

Demanda Proyectada de Fuerza Laboral para las Operaciones Mineras de Chile*

Fuente: Fuerza Laboral en la Gran Minería Chilena, Diagnóstico y Recomendaciones, 2011-2020, Fundación Chile.

^{*:} Considera los proyectos de la gran minería que actualmente se encuentran en factibilidad.

^{**:} Staff: Jefes, supervisores y administrativos; profesionales de ejecución: topógrafos, alarifes, proyectistas y dibujantes, personal de programación y control; mantenedores: soldadores, mecánicos, eléctricos, personal de piping, instrumentistas, entre otros; personal de construcción: maestros, capataces, concreteros y montajistas estructurales, entre otros.

Desafíos del cluster minero

Al 2020:250 proveedores de clase mundial

Exportación creciente de ingeniería

El Aporte de los Proveedores

Codelco: Programa de Desarrollo de Proveedores de Clase Mundial

Hacia la Innovacion

Diploma en nuevas tecnologías en el sector minero

Se espera potenciar la formación de capital humano en:

- Negocio Minero y a las Tecnologías que lo apoyan
- Gestión de Proyectos Tecnológicos en Minería
- Tecnologías y Automatización en Minería
- Modelamiento y Simulación de Procesos Productivos, e Inteligencia de Negocios
- Gestión del Cambio
- Innovación TICA para la Minería

Reconocimientos Invitación de CODELCO TICA Colegas Profesionales del sector minero Apoyo de entidades como Conicyt, ICM, UTFSM Empresas e Instituciones sector

Departamento de Electrónica Universidad Técnica Federico Santa María

Núcleo Milenio de Electrónica Industrial, Mecatrónica y Control de Procesos

Centro de Automatización y Supervision para la Industria Minera

