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Summary

• Typical planning process is a serial methods of 
procedures, that use geostatistics data as input and 
need a post hoc design and capacity correction.

• We show an idea to joint planning, geostatistics and 
design, considering capacity.

• Simulated annealing and floating cones is just a 
excuse…
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Houston, we´ve had a problem here!

• We used a “mean” block model. What about 
uncertainty? 

• Theoretical solution is not operative.
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Final Pit, as an example

• There exists efficients 
algorithms

• There are fast 
algorithms for 
scheduling that use 
Final Pits 

• Divide and conquer



Lersch & Grossman

• Translate value 
maximization to a max 
flow in an oriented net.

• Slope is satisfied as a 
precedence relationship



Floating cones algorithm (Greedy)

• Accepting new cones while they add value

Remark (representation): in order to define the surface of final pit at 

left image, we need 2 points. Using Lerchs&Grossman we need 12.
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Cones algorithms

Greedy

• Select a cone

• It is accepted:

– Certainly if it adds value

– Probably if it doesn’t 
destroy too much value 
and iteration is not too 
advanced (cooling 
down).

Stop at fixed steps.

Simulated Annealing

• Select a cone

• It is accepted:

– Certainly if it adds value

– Probably if it doesn’t 
destroy too much value 
and iteration is not too 
advanced (cooling down).

A “while” is running until system is 
frozen.



Why Simulated Annealing?

• There are success cases

• Planning process integrated

• Paralelized



Benchmark 1: small block model
Marvin Mine (62,220 blocks)

Marvin Value Block mined Representation Time (secs)

Pseudoflux 8.96E+11 6,568 621 2

Greedy 8.83E+11 6,454 128 5

S. Annealing 8.81E+11 6,447 507 22

Remark: Pseudoflux is faster and achieves optimum.



Benchmark 2: strong nugget effect
Marvin + big Bernoulli noise

Marvin+Noise Value Block mined Representation Time (secs)

Pseudoflux - - - 24hrs

Greedy 1.02E+12 20,602 339 10

S. Annealing 1.03E+12 17,956 638 20

Remark: Pseudoflux does not achieve optimum after 24hrs.



Benchmark 3: big block model
(Marvin refined to 1,297,770 blocks)

Big BM Value Block mined Representation Time (secs)

Pseudoflux - - - 24hrs

Greedy 1.72E+13 698,828 1197 90

S. Annealing 1.53E+13 619,917 592 18

Remark: Simulated Annealing needs short time to achieve an almost optimum point. 



Conclusions for final pit

• Floating Cones with Simulated Annealing could be 
more efficient for big block models or strong nugget 
effect situations.

• Its representation is cheaper.
• It leads to try several simulations for block model.
• Cones is a cheap (and flexible) object to satisfy slope 

(and could fit mine design).



Remarks
• Uncertainty: try block model 

simulations inside the 

heuristics running, and accept new 

cones if its value distribution pass 

certain criteria. Joint planning 
and geostatistics.

• Design: try truncated operative 
cones. It leads an operative final pit.

Joint planning and desing.
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Context

• This ppt is a part of a PhD thesis.

• Subject: Mine Planning under geological uncertainty.
• A priori approach: 

– Simulation and design embedded in optimization, turning bands
– Simulated annealing to solver hard problems.

– Strategy instead of rigid planning solution

• Final application: long term planning for open pit to underground 

transition 



ALGORITHMS BASED ON 

AGGREGATION FOR THE OPEN-PIT 

BLOCK SCHEDULING PROBLEM



• Scheduling

1

2

3

• Current techniques are based on Lerchs & Grossman 
algorithm (1965): It does not consider production and mining
capacities, hence, it does not take time into account.



Main idea: Aggregation
• Use aggregation to reduce the complexity of 

the problem and heuristics to generate 
feasible (good) solutions:

– Reducing number of periods

– Relaxing constraints

– Reblocking



Blocks in the borders are then 
refined and re-optimized



Final solution is reported 
at original block level



Case study : Marvin
• Imaginary mine (but well 

known).
• About 12,500 blocks
• Discount rate: 10% per year
• 12 time periods
• Data blocks:

• Two capacity constraints: 
– Mining (transportation)  is 70,000 

[TPD]
– Processing (plant) is 30,000 [TPD].

• Block predecessors:
– Slope angle of 45 degrees



Results • Each cell reports the value (MMUS$) 
and time (sec) to reach the solution.

• IP: Original problem (unsolvable)
• LP (upper bound) is available only for 

the larger blocks, and gives gaps of 
about 9%.

• OoM = Out of Memory

# Blocks 99,744 12,468

IP OoM OoM

Mine M15 M30

LP OoM
-

1,246
7,235 [s]

HInc -
>10,800 [s]

1,134
312 [s]

HInc-STW -
>10,800 [s]

998
9,324 [s]

HReb/HInc 1,123
2,027 [s]

1,134
312 [s]

HReb/ IP OoM OoM



Conclusions and further work 

• Aggregation techniques allow to tackle instances that are 
“unsolvable” otherwise.

• Distribute computational effort (steps of algorithm) at 
multiple computers simultaneously (parallelization)

• Extend to the case where coefficients in capacity 
constraints may be negative (constraints on the average 
value of some attribute)

• Extend to the case where the model decides the 
destination of the block (cut ore grade not fixed)

• Stochastic case (geology, prices, operations).



Joining…



Joining: planning, geo-uncertainty, 
design, capacity

• Embebing uncertainty in planning with floating cones.

• Using turning bands to sampling (Stochatics Samping Aver.)

• Using operative cones to fix a design strategy

• Reblock to reduce difficulty in time.

• Parallelize sampling (turning bands), simulated annealing.
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