

# Model-based System Identification Cloud (MbSIC) for the integration of Engineering and Operation





#### **Overview of Mining Industry**

| Plan for<br>Supply                   | Exploration |                                       | Production                                                            |                         | Process /<br>Refine   | Secondary Distribution |
|--------------------------------------|-------------|---------------------------------------|-----------------------------------------------------------------------|-------------------------|-----------------------|------------------------|
| Understand<br>reserves,<br>policy,   | Prospecting | Physical<br>testing and<br>assessment | Extraction                                                            | Primary<br>distribution | Refinery,<br>smelter, | Trucking,<br>retail,   |
| Mining                               | 1% of cost  |                                       | 20% infrastructure set-up<br>80% extraction and primary<br>processing |                         |                       |                        |
|                                      |             |                                       |                                                                       |                         |                       |                        |
| Capital Investment in Mining is huge |             |                                       |                                                                       |                         |                       |                        |

- Total investment in WW is about \$110B in 2011
- CODELCO announced \$16.3B capital investment between 2011-2015

#### Effective use of such invested asset is critical



# **Challenges of Computational Engineering for Mining Industry** Our challenge is how we can leverage Engineering information for maintenance and operation and vice-versa





#### What are our values to bridge the gaps?

Knowledge / Experience / Environment (Often implicit / invisible)

> Model Development (Spreadsheet Modeling and Model-based System Identification)

Systems Modeling gives the essence of systems specification - How can we represent Engineer's Knowledge in Formal Language to create products?

> Information Management (Engineering Information **Integration and Information Protection**)

Simulation/Verification (Complex Control Systems Simulation, Parametric Constraint Evaluator, and Plant Model Integration)

Source Code



BoM





# **Model-based System Identification Cloud (MbSIC)** Since data analytics in natural resource industry is becoming enormous and complex, developing analysis system is getting hard. MbSIC addresses these issues by leveraging Model-driven Systems Engineering and Cloud Computing.





#### Vision of Integration of Engineering and Operation by MbSIC





## **Target Problem by Example**

**JASMINE (Japan Astrometry Mission INfra-red Exploration)** Project is a satellite-based high precision (1mas) astrometry project. MbSIC is challenging this data analysis.





#### **Quick look at Systems Model for JASMINE**



© 2012 IBM Corporation

### The mechanism of MbSIC

MbSIC leverages MapReduce framework to process massive number of observations. It computes derivatives in Map Phase and then construct a matrix in reduce phase. And then solve that matrix in GPGPU computing, and repeats these until convergence



#### **Current Status on Satellite Astrometry and Remaining Work**

The input data were generated by using a simple model, that is:

The satellite is assumed as a single rigid body. Effects of disturbances, an attitude control and any degradation of equipment weren't considered. Only white Gaussian noise was added to the quaternion. A gravitational light deflection wasn't included in a source model.

1.00E+02[m as] 1.00E+01 of distribution 1.00E+00 1.00E-01 RSE 1.00E-021.00E-032 6 8 4 10 12 140 Iteration Number

Evolution of the parallax update vs. the iteration number for 10000 objects RSE: Robust Scatter Estimate



#### **Concluding Remarks** Model based System Identification will open up new era of the integration between Engineering and Operation

- Information integration between Engineering and Maintenance will enable
  - By exploiting the systems model information, we can improve maintenance, and then give proper feedback to engineering
- MbSIC is scalable, cloud-based technology for System Identification to capture huge amount of observations from sensors
  - It compiles systems model, and then execute least square method on top of Hadoop and GPGPU based cloud technology.
  - Currently, we could apply it to the astrometry, but we would like to apply it to mining industry
- Next Step:
  - We need to build target equipment and operation systems model
    - What are the difference and similarity between astrometry and equipment?
  - Support Recursive function (e.g. for Kalman Filter)
  - Hybrid System support for Transient (or Human) behavior