

Sustain.Ability.

Rodrigo Toro, José Manuel Ortiz, Iván Yutronic An Industrial Simulation System for Copper Concentration Plants

Agenda

- The Challenge
- Our Solution
- A Case Study
- Current State
- Future Work & Final Remarks

Dynamic Simulation for Copper Concentrator Plants

THE CHALLENGE

Motivation

High employee turnover rates and retirement + Lack of experienced personnel

= High investments in training (and technology)

Our Challenge

- Develop a Model Library to simulate dynamically Copper Concentrator Plants in order to carry out:
 - Integrated engineering validation for new projects

- Operator training

- Transmit best operational practices
- Educate the personnel in new advanced applications (like APC)

Dynamic Simulation for Copper Concentrator Plants

THE SOLUTION

Dynamical MMM Model Library

- Is based on models that are well accepted by the metallurgical community,
 - For comminution models we've used population balance models,
 - For classification, the "PLITT" model,
- Models are be adjusted with real plant data,
 - Input and output particle size distributions,

Brief Description of Comminution Models

- Models based on the "Modern Comminution and Classification Theory*"
 - Using a population balance model

*Gutiérrez, L. and Sepúlveda, J. (1986). Dimensionamiento y optimización de plantas concentradoras mediante técnicas de modelación matemática. CIMM

Evaluation Methodology

- Excursion
 - Based on a pre-defined operational range
- Target (not used in the case study)
 - Based on a target value and the time taken to reach it

Our Training Solution

Dynamic Simulation for Copper Concentrator Plants

CASE STUDY: C. MINING COMPANY

The Company Trusted in Us

 To carry out a simulation based training focused in the transmission of best operational practices trough the use of APC applications,

Operations

Honeywell

 As a team, we defined five operational training scenarios for their biggest SAG Line

The Process Flow Diagram

- Each Scenario have
 - Theoretical intro
 - Problem definition
 - Event sequence
 - Tips to revert the situation
 - Evaluation table

Training Scenarios

1. SAG Mill overload due to an increase on the ore coarseness,

- 1. SAG Mill overload due to an increase on the ore coarseness,
- 2. Low Stock-Pile level and its effects on the plant,

- 1. SAG Mill overload due to an increase on the ore coarseness,
- 2. Low Stock-Pile level and its effects on the plant,
- 3. Constrained operation, with low water network pressure,

- 1. SAG Mill overload due to an increase on the ore coarseness,
- 2. Low Stock-Pile level and its effects on the plant,
- **3.** Constrained operation, with low water network pressure,
- 4. Secondary grinding. Constrained operation with sudden pump malfunction events and low water availability,

- 1. SAG Mill overload due to an increase on the ore coarseness,
- 2. Low Stock-Pile level and its effects on the plant,
- **3.** Constrained operation, with low water network pressure,
- 4. Secondary grinding. Constrained operation with sudden pump malfunction events and low water availability,
- 5. Operation optimization of the integrated circuit

Results (1/2)

- The evaluation of the impact of a simulation based training is not straight forward,
- Therefore, the results presented in this section are an indirect measure of this impact.

Results (2/2)

- Increase in utilization of secondary grinding APC application, from 20% to about 70%, in average,
- Good results in theoretical tests,

Dynamic Simulation for Copper Concentrator Plants

OUR CURRENT STATE

Chile's Simulation Team

- We have conformed a multi-disciplinary team

 A mathematician,
 - A chemical engineer,
 - Electronic engineers,
 - Metallurgical consultants

Clients and Projects

- Codelco VP
 - 5 years contract to simulate the structural projects,
 - Ministro Hales
 - Andina Phase 2
 - El Teniente New Mine Level
 - Underground Chuquicamata
 - Currentrly working in the first structural project: Ministro Hales,
 - Modeling,
 - Integrated engineering validation,
 - Dynamic DCS CAT,
 - Operator Training Simulator (OTS)

Clients and Projects

- Caserones (Lumina Copper)
 - 3 years contract for technological platforms,
 - Oxide Plant SBT(LX, SX, EW),
 - Concentrator (Sulfur) Plant SBT(crushing, grinding, flotation, thickening).

Simulations for Concentrator Plants

- Crushing
 - Gyratory (Primary)
 Crusher
 - Cone Crusher

- Grinding
 - SAG Mill
 - Ball Mill
 - Vertical Mill

Simulations for Concentrator Plants

- Classification
 - Hidrocyclone Battery

- Flotation
 - Flotation Cell

Thickening

- Thickener

Simulators for Copper Oxide Plants

- Leaching
 - Dump Leach

- Solvent Extraction
 - Mixer-Settler
 - WLO

• Electrowinning – Electrowinning Cell

Dynamic Simulation for Copper Concentrator Plants

FUTURE WORK AND FINAL REMARKS

Future Work

- Improvement of Flotation Cell model
 - Include pH effect
- Creation of Flotation Column model
 - Washing water effect
 - pH effect
- Improvement of Thickener model
 - Improve torque calculation

Future Work: Integral Solution

Final Remarks

- SBT help to
 - Adopt new technologies, like APC applications,
 - Give confidence to the students to face difficult decisions in every-day operation,
 - Transmit best operational practices

Dynamic Simulation for Copper Concentrator Plants
THANK YOU

Dynamic Simulation for Copper Concentrator Plants

BACKUP SLIDES

We Engineered a Two-Stage Solution

- Matlab & Simulink
 - Model development and testing
- UniSim
 - Commercial use (deliverable)

Brief Description of Comminution Models (2/2)

• The mass holdup at every size interval is defined as

